CRISPR is a relatively new term that
describes new discoveries and new technology in the world of genetics. CRISPR stands for
Clustered Regularly Interspaced Short Palindromic Repeats and refers to short repetitions of base
pair sequences in bacterial genomes which naturally occur as part of bacterial genetic
defence mechanisms against invading viruses. These CRISPR sequences are used by
bacteria to store genetic memories of past viral invasions that might otherwise
lead to the destruction of the bacterial cell. Next to a CRISPR sequence is a
segment of DNA that represents part of a viral genome from a previous encounter
with that virus. It is like the bacteria store a photo of all of the viruses that
previously tried to kill them and then recognize that virus when it shows up
again. Cas9 enzymes search through the cell for these potentially dangerous pieces
of DNA and then make RNA copies that will guide the Cas9 enzyme to the
dangerous viral DNA and cut it in two so that the virus is defeated. If a new
virus shows up, Cas9 first makes a copy of the new viral genome and inserts it
in between the CRISPR sequences so that it is ready for the next time this
virus tries to invade.


This biological system within the cells of bacteria has been exploited and
used by genetic scientists to create a tool that can be used to edit the genome
of humans and other research subjects. So, you may also hear people refer to
CRISPR technology as it is used for gene editing in medicine and research. Cas9
and other CRISPR enzymes recognize strings of DNA about 20 base-pairs in length
and can therefore be engineered to be very specific and targeted. This has
allowed researchers to load Cas9 with a specific sequence that can then target
where they would like to cut out a piece of DNA, say to knock out a gene and
determine what that gene does, knock out a rogue gene that is malfunctioning,
or to cut out a defective gene and replace it with a properly functioning gene.
Recently, scientists in China used this technology to engineer cells to
potentially treat lung cancer.
In this case, CRISPR technology was used on immune cells taken from the patients
and a gene was disabled. The protein, PD-1, normally slows down or ends an
immune response (something that is normally needed but exploited by cancer
cells) and so researchers inactivated it so that the body might continue to
mount an immune response against the cancer cells in the lungs. This represents
the first time CRISPR technology has been used in such a way in human trials.

As one can readily see, this technology has vast implications and has the
potential to solve many medical problems. CRISPR could repair the mutation that
causes Cystic-Fibrosis in a family’s genetic makeup, or repair the gene that
causes genetic forms of colon cancer such as Adenomatous Polyposis Coli (APC). It
also brings with it the possibility of ethical challenges. It could be used to
substitute the gene for blue eyes in place of the gene for brown eyes (or the opposite
exchange); or it could be used to substitute a gene that codes for average
height for a gene that codes for exceptional height (really handy if you are
trying to build an Olympic basketball team). Taken to logical conclusions,
CRISPR technology could be used to build a super-race of humans and even create
genetic enhancements that cannot yet be imagined (think real life X-Men mutants).
Scientists in China have already published data showing that they had successfully modified the DNA on nonviable human embryos. They could have just as easily been working on viable embryos.

In a future where diseases can be eradicated and enhancements can be made, what
becomes of the average person with defects or no enhancements? Should we
concern ourselves with this? A few years ago, the movie Gattaca attempted to
engage audiences in questions related to such issues. Now, nearly 20 years
later, genetic technology has advanced to nearly the point predicted in that
movie. What will another 10 years of medical and technological advance look
like in our world? How might we prepare now for the ethical questions yet to
come?

For further explanation and discussion, read this article on the modification of DNA in nonviable human embryos.

Dive in!

Join The Great Journey with KeithShields.ca subscribers, and see new posts as they happen.

We promise we’ll never spam.